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Abstract.

The vapor pressures (pyap) of organic molecules play a crucial role in the partitioning of secondary organic aerosol (SOA).
Given the vast diversity of atmospheric organic compounds, experimentally determining py,, of each compound is unfeasible.
Machine Learning (ML) algorithms allow the prediction of physicochemical properties based on complex representations of
molecular structure, but their performance crucially depends on the availability of sufficient training data. We propose a novel
approach to predict py,p using group contribution-assisted graph convolutional neural networks (GC2NN). The models use
molecular descriptors like molar mass alongside molecular graphs containing atom and bond features as representations of
molecular structure. Molecular graphs allow the ML model to better infer molecular connectivity compared to methods using
other, non-structural embeddings. We achieve best results with an adaptive-depth GC>NN, where the number of evaluated graph
layers depends on molecular size. We present two vapor pressure estimation models that achieve strong agreement between
predicted and experimentally-determined py.p. The first is a general model with broad scope that is suitable for both organic and
inorganic molecules and achieves a mean absolute error (MAE) of 0.67 log-units (R? = 0.86). The second model is specialized
on organic compounds with functional groups often encountered in atmospheric SOA, achieving an even stronger correlation
with the test data (MAE = 0.36 log-units, R? = 0.97). The adaptive-depth GC2NN models clearly outperform existing methods,
including parameterizations and group-contribution methods, demonstrating that graph-based ML techniques are powerful

tools for the estimation of physicochemical properties, even when experimental data are scarce.

1 Introduction

Secondary organic aerosol (SOA) account for a substantial mass fraction (20-90%) of tropospheric aerosols (Jimenez et al.,
2009). They affect the atmosphere’s radiative budget and serve as nuclei in cloud droplet and ice crystal formation (Kanakidou
et al., 2005; Shrivastava et al., 2017). Furthermore, SOA play a major role in the context of air quality and have been linked
to adverse health effects (Poschl and Shiraiwa, 2015). Understanding SOA formation and evolution is complicated by the
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large number and variety of involved organic species and associated reactions and properties, making SOA a source of large
uncertainties in climate and air quality modelling (Intergovernmental Panel on Climate Change, 2023).

The saturation vapor pressure (pyap) of a compound determines its partitioning equilibrium between the condensed and
gas phase. In the following, we will classify compounds into volatility ranges based on their saturation mass concentrations
over the pure liquid (C) as proposed by Donahue et al. (2009). The classes are extremely low-volatility organic compounds
(ELVOC, Cy < 3x 1076 ;ig m—3), low-volatility organic compounds (LVOC, 3x107% < Cy <3x10~% g m—3), semi-volatile
organic compounds (SVOC, 3x10™% < Cy < 300 ug m~?), intermediate-volatility organic compounds (IVOC, 300 < Cy <
3x10% g m~3) and volatile organic compounds (IVOC, Cy > 3x10% g m~3). In the atmosphere, saturation vapor pressure
governs new particle formation and gas-particle partitioning, such that SOA mass yield is largely determined by py,, (Pankow,
1987; Kulmala and Kerminen, 2008). However, due to the large number of atmospherically-relevant compounds, exhaustive
experimental determination of py,, is not feasible (Goldstein and Galbally, 2007; Bilde et al., 2015).

Various quantitative structure-activity relationship (QSAR) methods for the approximation of thermodynamic properties like
Dvap OF Teactivity have been developed to address this limitation: empirical structure-property relationship models often map
a sum formula to a thermodynamic property of interest, using algebraic equations with parameters that are fitted to experi-
mental data (Donahue et al., 2011; Li et al., 2016). Group contribution models such as SIMPOL (Pankow and Asher, 2008)
and EVAPORATION (Compernolle et al., 2011) can be classified as semi-empirical (Gani, 2019) as they incorporate existing
theoretical knowledge about the relationships of structural features and chemical behavior into mathematical equations. This
often includes the consideration the occurrences, positions, or interactions of functional groups, while also determining fit pa-
rameters using experimental data (Nannoolal et al., 2004; Moller et al., 2008). The consideration of specific functional groups
limits group contribution models to certain compound classes, possibly leading to significant errors when applied to molecules
outside their applicable range (Tahami et al., 2019). Quantum-mechanical calculation (QM) models based on density functional
theory are a common non-empirical approach to property determination (Geerlings et al., 2003), and can be combined with
empirical approaches (Ratcliff et al., 2017). Such quantum-mechanical calculations have been used for the generation of large
data sets (Wang et al., 2017; Tabor et al., 2019; Besel et al., 2023), facilitating the development of machine learning (ML)-based
QSAR models (Lumiaro et al., 2021; Kriiger et al., 2022). When categorising ML-based QSAR models, we can distinguish
the actual algorithm and the molecular representation that encodes molecular structures into suitable model input, which to-
gether majorly determine a ML model’s performance in deriving properties from molecular structures (Lumiaro et al., 2021).
Combinations successfully applied in previous studies include one-hot encoded Simplified Molecular Input Line Entry System
(SMILES) strings with convolutional neural networks (OHE-CNN; Kriiger et al., 2022), specific molecular descriptors with
decision trees (Armeli et al., 2023) or topological fingerprints with Gaussian process regression (Besel et al., 2024). Galeazzo
and Shiraiwa (2022) developed a method to predict glass transition temperature and melting points of small molecules using
Extreme Gradient Boosting (XGBoost) and a neural network, respectively, in combination with derived molecular embeddings
as molecular fingerprints. The transformation of molecular structures into such machine-readable molecular representations
requires the ML models to learn the representation principles along with the physicochemical principles that determine the

target property, to the detriment of limiting their application to the prediction of properties with extensive amounts of data (von
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Lilienfeld and Burke, 2020). Data curation techniques can improve model accuracy, e.g., through identification and deletion
of data points associated with large experimental uncertainty (Gadaleta et al., 2018; Ulrich et al., 2021). Within atmospheric
chemistry, only few ML-based QSAR models have been trained exclusively on experimental measurements, as they generally
require a large quantity of training data for sufficient model generalization, and a careful and computationally expensive error
estimation when only limited amounts of data are available (Galeazzo and Shiraiwa, 2022; Armeli et al., 2023). The over-
all moderate to poor accuracy of existing QSAR models for py,, prediction exemplifies the need for more accurate, publicly
available models (Longnecker et al., 2025).

Graph neural networks (GNNs) are a class of algorithms within the domain of geometric deep learning which have emerged
as a powerful addition to machine learning methods in computational chemistry and material sciences in the last decade
(von Lilienfeld and Burke, 2020; Reiser et al., 2022). GNNs can be interpreted as an extension of convolutional neural net-
works beyond fixed dimension grids of data to include irregularly shaped structures (Kipf and Welling, 2017; Bronstein et al.,
2017), such as graph-based representations of molecules (Duvenaud et al., 2015; Atz et al., 2021). Molecular graph repre-
sentations and algorithms that operate on such graphs omit an additional representation learning step and can directly infer
intramolecular spatial relations along with properties assigned to graph elements. Furthermore, in contrast to sum formula-
based methods, structure-based methods can distinguish structural isomers, which may differ significantly in their properties
(Isaacman-VanWertz and Aumont, 2021). Lumiaro et al. (2021) compared a variety of molecular fingerprints in combina-
tion with Kernel Ridge Regression, finding graph-based representations to be advantageous compared to canonical descriptive
chemical features based methods. For the prediction of absorption, distribution, metabolism, excretion and toxicity (ADMET)
properties, Xiong et al. (2021) employed a multi-task graph attention framework addressing classification and regression tasks.

In this work, we propose group contribution-assisted graph convolutional neural network (GC2NN) models that are simul-
taneously trained on lists of molecular descriptors as well as graph representations of molecules, in which atom features are
mapped to nodes, and bond features mapped to edges of a graph structure. We test model performance on data sets from
experimental measurements and QM calculations (Besel et al., 2023), and compare our models with established methods for
the determination of py,p: one ML approach, where convolutional neural networks are trained on one-hot encoded SMILES
representations (Kriiger et al., 2022), two parameterizations, where py,, are derived only from the compounds’ elemental com-
position (Donahue et al., 2011; Li et al., 2016), and SIMPOL (Pankow and Asher, 2008), EVAPORATION (Compernolle et al.,

2011), and EPI-Suite (EPI), which are commonly used semi-empirical group-contribution methods.
2 Methods

2.1 Vapor pressure data

We assembled a data set of SMILES representations of 6128 compounds with experimental saturation vapor pressure (Pyap)
measurements at 298 K by crawling data from pubchem (Kim et al., 2016). In addition, we retrieved the data set published
in Naef and Acree (2021), comprised of 2070 compounds. After removal of species present in both data sets, and species

that contain elements that occur in fewer than 30 compounds, a total of 6256 unique compounds with experimental py,p,
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measurements are obtained and referred to as broad data. An overview of molecular substructures in the broad data set is
displayed in Fig. 1A. It encompasses various compound types, such as aromatics, alcohols, carboxylic acids, esters, amines,
amides, carbonyls, sulfides and nitriles. As the broad data set also contains ~ 5% inorganic compounds, we refer to compounds
in this data set more generally as extremely low-volatility compounds (ELVOC), low-volatility compounds (LVOC), semi-
volatile compounds (SVOC), intermediate-volatility compounds (IVOC) and volatile compounds (VOC), thus keeping the
same acronyms and vapor pressures bins as Donahue et al. (2009) established for organic compounds. Experimental py,p
measurements range from 10~19 to 107 Pa. The distribution of saturation concentrations and the number of ELVOC, LVOC,
SVOC, IVOC and VOC are summarized in Fig. 1E. For a comparison with established methods for py,, prediction, and to test
the method on a data set of compounds that are relevant for the atmosphere, we extract all compounds that lie within the scope
of these methods (Pankow and Asher, 2008; Compernolle et al., 2011; Donahue et al., 2011; Li et al., 2016), confining the
data set to molecules only consisting of C, H, and O atoms and belonging to the following compound classes: alkanes, (non-
aromatic) alkenes, aldehydes, ketones, ethers, esters, peroxides, nitrates, peroxy acyl nitrates, alcohols, acids, hydroperoxides
and peracids. This subset of the broad data, referred to as confined data, contains a total of 1371 compounds with much smaller
variety of compound classes, including carboxyl, hydroxyl, ester and carbonyl functional groups (Fig. 1B). While the overall
Dvap Tange is very similar, the confined data set exhibits a smaller fraction of ELVOC, LVOC and SVOC than the broad data set
(Fig. 1C,D,EF).

In addition to the experimental data, we train and evaluate GC2NN models based on the quantum-mechanical (QM) data set
GeckoQ (Besel et al., 2023). This data set contains a total of 31,637 compounds with calculated py,,. Compounds in this data
are carbon backbones derived from decane, toluene and a-pinene with various functional groups (including C, O, H). These
structures were generated by the GECKO-A mechanism generator that simulates the atmospheric oxidation of hydrocarbons to
ensure atmospheric relevance (Aumont et al., 2005). Besel et al. conducted a conformer search using the COSMOconf program,
calculated individual conformer py,, values with COSMOtherm, and determined a single py,, accounting for the population of
conformers according to the Boltzmann distribution (Wang et al., 2017; Kurtén et al., 2018; Hyttinen et al., 2022).

From each data set, we sample test sets (10% of compounds) that are fully withheld from model training and used to evaluate
the trained GC?NN models. The remaining compounds in each data set (90%) are used for training of the GC?NN models,
applying 5-fold cross-validation with 80% of data in the training and 20% in the validation set. The resulting data set sizes are
the following: broad training: 4505, broad validation: 1126, broad test: 625, confined training: 987, confined validation: 247,
confined test: 137, GeckoQ training: 22,778, GeckoQ validation: 5695, and GeckoQ test: 3164. py,, measurements in Pa are
logarithmized and scaled to a [0, 1]-interval using min-max scaling.

Of the 1371 molecules in the confined data set, 474 are also contained in the EVAPORATION training data (Compernolle
et al., 2011). We ensure that no EVAPORATION training data are present in the test set that is used for comparison between
the methods. Note that this only applies to EVAPORATION due to data availability and practicability; any other pre-trained or
fitted method is likely to contain some fraction of the test set used in this study in their training data, including Donahue et al.
(2011), Li et al. (2016), SIMPOL, and EPI-Suite.
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Figure 1. Overview of the two experimental data sets used in this study: broad data set (n = 6256; A, C, E) and confined subset (n = 1371;
B, D, F). Panels A and B show all substructures which are present in more than 1% of molecules in the respective data set (not shown: A:
nitrate, sulfo, peroxide, organosulfate, peroxy acyl nitrate; B: peroxide). Panels C and D display histograms of experimental vapor pressure
measurements in each data set, whereas Panels E and F show the same data as saturation mass concentrations (Co). The volatility classes are
adopted from Donahue et al. (2009).
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2.2 Molecular representation

For the graph convolution component of the GC2NN, we transform SMILES representations of molecular structures into
graph-representations where atom features are mapped to node features, and bond features to edge features (Tables S1 and S2).
The final graph structure is comprised of three tensors. Each node and bond in the graph is associated with a vector of atom
features and bond features, respectively. An adjacency matrix indicates the connectivity of atoms in the molecule.

For the model’s group contribution component, a list of molecular descriptors (including molar mass, number of atoms
for each element, and the number of common functional groups) are derived directly from the SMILES representation of the
molecule. The descriptors are specific to each data set and are summarized in Tab. S3. All descriptors and features are one-hot

encoded or normalized to a [0, 1] interval.
2.3 Model architecture

We test and compare two group contribution-assisted graph convolutional neural networks (GC2NN) models in this work: a
fixed-depth GC2NN (fdGC?NN) model with a fixed number of graph layers, and an adaptive-depth GC?>NN (adGC2NN) model
where the number of graph layers is dynamically adapted based on a compound’s size. Schematic overviews of the adGC?NN
and fdGC?NN models are shown in Fig. 2 and Fig. S1, respectively. All GC?NN models encompass two components with
separate inputs that are derived from the SMILES-encoded molecular structure. The graph convolution component is comprised
of multiple graph convolution layers and graph attention layers. Graph convolution layers apply convolution operations on each
node, deriving information from the current node’s properties, as well as its neighbors (Kipf and Welling, 2017; Zhang et al.,
2019). Graph attention layers enable the model to also derive information from edge attributes (Velickovi¢ et al., 2017; Withnall
et al., 2020; Tang et al., 2020). Each graph attention or convolution layer increases the nodes’ receptive fields, i.e. the distance
between two nodes (and hence atoms) that still affect each other. To account for variable molecule sizes, we use the maximum
distance between two atoms of a compound (mazdist) to determine the number of processing graph layers in the adGC2NN,
with a maximum of five layers for molecules with mazdist > 4. In the fdGC2NN, all compounds are indiscriminately passed
through five graph layers. The models’ group contribution component is comprised of fully connected hidden layers that
process additional molecular descriptors in parallel. Graph layer-specific merging layers map the information obtained from
both model components to the output layer and a vapor pressure prediction. We use the Python packages RDKit and PyTorch
(and PyTorch_Geometric) to generate the graph representations of molecular species from SMILES and train GC2NN models
(Landrum, 2013; Paszke et al., 2019).

The Python package Optuna (Akiba et al., 2019) is used to efficiently optimize hyper-parameters of each GC2NN model,
using 5-fold cross-validation to mitigate variability due to the small data sets. We select MAE as loss function and optimize
hyperparameters by minimizing average validation loss across all cross-validation folds, but reject models if the MAE standard
deviation is larger than 0.08, to ensure robust model architectures. All models are trained to a maximum of 400 training epochs,
unless validation loss does not decrease for 20 consecutive epochs. If so, model parameters are reset to the state of the epoch

where the last validation loss decrease occurred, and training is terminated to avoid over-fitting. After the selection of suitable
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Figure 2. Schematic overview of molecular representation and model functionality in the adaptive-depth GC*NN models. Right: for the

group contribution component, Simplified Molecular Input Line Entry System (SMILES) strings are used to derive holistic information on

the molecule, such as its molar mass and the presence of atoms and functional groups (Tab. S3). Left: for the model’s graph convolution

component, SMILES strings are transformed into graph representations, encoded as adjacency matrices, node features, and edge features.

This molecular representation is transformed using graph attention and graph convolution layers. The maximum distance (maxdist) between

two nodes in the input graph determines the number of utilized graph layers, matching the nodes’ receptive fields with the respective

compound’s size. Fully-connected merging layers process information from both model components and map them to the single-node output

layer, the py,p prediction.
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hyper-parameters, a single model is trained by merging training and validation data to a single training data set, referred to
as T+V model. To account for the additional training data, we locally optimize the number of training epochs around the
number determined during hyper-parameter tuning. A summary of the relevant hyper-parameters including descriptions and

tested ranges is displayed in Tab. S4.

3 Results and Discussion

We train and evaluate group contribution-assisted graph convolutional neural network (GC2NN) models on two sets of ex-
perimental vapor pressure (py,p) data and the GeckoQ data set where py,, was derived from quantum-mechanical calculations
(Besel et al., 2023). We distinguish between models trained on experimental data sets with different scopes: the GC2NN-
confined are trained on a confined data set that only contains compounds relevant in the atmosphere within the scope of the
methods used for benchmarking, i.e. only containing C, H, and O, and excluding aromatics and some additional functional

groups (Fig. 1B,D,F). GC2NN-broad are trained on the full experimental data set (Fig. 1A,C,E).
3.1 GCZ2NN-confined

Figure 3A shows that the adGC2NN model exhibits excellent agreement with the experimental measurements in the indepen-
dent test set, except from a small number of outliers (MAE = 0.36 log-units). Average training time of the five adGC?>NN
cross-validation models is 57 minutes on a Nvidia A100, and the average test set mean absolute error (MAE) is 0.39 log-units
with a standard deviation of 1.37x10~2. The T+V fdGC?NN performs worse with an MAE of 0.49 log-units. Average training
time of the five fdGC2NN cross-validation models is 22 minutes on a Nvidia A100, and the average test set mean absolute
error (MAE) is 0.51 log-units with a standard deviation of 1.8 x 10~2. The selected hyper-parameters for all f{dGC?>NN models
are summarized in Tab. S5. The adGC2NN model is more robust regarding the choice of hyper-parameters, which permits the
use of a single model architecture for all data sets (Tab. S6). The adGC2NN significantly outperforms the Kriiger et al. (2022)
one hot-encoding convolutional neural network approach (OHE-CNN; MAE = 0.66 log-units; average MAE = (.71 log-units
for five cross-validation folds), the Donahue et al. (2011) (MAE = 1.58 log-units) and Li et al. (2016) (MAE = 1.06 log-units)
parameterizations, as well as EPI-Suite (MAE = 0.51 log-units), SIMPOL (MAE = 0.55 log-units) and EVAPORATION (MAE
=0.51 log-units) group contribution methods (Fig. 3). Note that the exclusion of a large fraction of molecules (>30 %) from the
test set biases the populations of chemical species in the training and test set for the GC2NN and OHE-CNN models (Fig. S2).
This may be disadvantageous for the GC2NN models, however, separate calculations with unbiased test set sampling show that
the choice of the test set does not have a strong effect on the test set error of the GC2NN models.

Figure 4 shows the distributions of the individual errors for chemical species in the test set for all methods. The fdGCZNN-
confined, SIMPOL and EVAPORATION methods exhibit near-identical error distributions where the majority of predictions
are very accurate (MAE < 0.5 log-units), and few predictions fall within the range of 0.5 to 1.5 log-units. Only the adGC?>NN
model has a larger density of very accurate predictions with only few compounds exceeding an MAE of 1.0. Significant

outliers (MAE > 1.5 log-units) only occur in the low-volatility range and are predominantly the same compounds across all
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Figure 3. Correlation scatter plots of model-predicted and experimentally-measured vapor pressures for the confined data set. Displayed

are data from the independent test set only. The adGC?NN-confined (panel A) and fdGC?>NN-confined (panel B) models are compared with

established methods: panel C shows the results using a convolutional neural network approach on one-hot encoded SMILES strings following

Kriiger et al. (2022). (D) Li et al. (2016) and (E) Donahue et al. (2011) are empirical parameterizations, whereas (F) EPI-Suite (EPI), (G)
Pankow and Asher (2008) and (H) Compernolle et al. (2011) are group contribution methods. All molecules present in the EVAPORATION

training data have been excluded from the test data set. Mean absolute error (MAE) values are in log1o(pvap / [Pa]). The dashed lines (£1.5

log-units from the 1:1 line) are used to indicate significant outliers.
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Figure 4. Violin plots representing confined test set error distribution of models shown in Fig. 3. Medians are displayed as white markers,
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log-units are not shown. Methods marked with an asterisk likely used a fraction of our test data in their training.

four methods, which may be an indicator for experimental measurement errors. EPI-Suite shows an hour-glass shaped profile
with a large fraction of very accurate predictions, as well as a large fraction of outliers. Similarly to EPI-Suite, the violin
plot for the SIMPOL method has its maximum density at very low error values, even though SIMPOL does not exhibit the
overall lowest MAE in our comparison. This is likely due to the presence of EPI-Suite and SIMPOL training data in our test
set. Methods for which this is likely the case are marked with an asterisk in Fig. 4. All methods generally perform better
at higher py., (Fig. S3). This behavior correlates with a similar, but weaker bias with regards to molar mass (Fig. S4). The
parameterization methods (Li et al., 2016; Donahue et al., 2011) exhibit the highest percentage of significant outliers.

To investigate the effect of experimental error in the low volatility range, we train f{dGC>NN models on a subset of the
confined data with logyo(pyap / [Pa]) > 0, encompassing only VOC and IVOC, resulting in 1057 compounds. The average test
set MAE of the cross-validation folds of this high-volatility fdGC?NN model is 0.32 log-units. This suggests that not only
does experimental uncertainty of ELVOC and LVOC lead to model uncertainty in this low-volatility range, but it impedes the
accuracy of fdGC2NN models in general.

We use the trained ad GC?>NN-confined model to review the concept of molecular corridors, following Shiraiwa et al. (2014),
where the chemical evolution of molecules constituting SOA is contextualized through their vapor pressure, molar mass, and
oxygen-to-carbon (O:C) ratio. The tight inverse correlation between volatility and molar mass mostly holds for the confined
test set (Fig. SA) as well as a data set of atmospherically-relevant compounds from Shiraiwa et al. (2014) (Fig. 5B). For the
confined test set, the adGC2NN predictions even tend to fall more strictly into these molecular corridors than the experimental

measurements, a potential indicator for experimental uncertainties. When applied to the data from Shiraiwa et al. (2014), we
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Figure 5. Molecular corridor plots following Shiraiwa et al. (2014). Left: comparison between adGC*NN-confined predictions and ex-
perimental measurements in the confined test set. Right: application of the adGC*NN-confined to a data set of atmospherically relevant
compounds (Shiraiwa et al., 2014). Blue and red boundary lines correspond to the volatility of n-alkanes and sugar alcohols (as determined

by EVAPORATION), respectively.

observe a large number of compounds classified as LVOC by the adGC2NN, that appear to deviate from the molecular corridors,
even exceeding upper boundary line corresponding to n-alkanes (O:C = 0). This deviation is either due to a mismatch between
the adGC?NN and the EVAPORATION model that was used to determine the boundary lines established in Shiraiwa et al.
(2014), or could be due to a systematic error of the adGC?NN as a result of the sparsity of ELVOC data in the training set
(Fig. S2B). Furthermore, the difficulties of accurately determining vapor pressures of ELVOC experimentally (Huisman et al.,
2013; Bilde et al., 2015) may contribute to this error. In atmospheric context, the accurate determination of ELVOC vapor
pressure is not critical with regards to SOA formation, as such compounds condense anyway. Note however, that the accurate
determination of ELVOC may be relevant in the context of nucleation, as recent experimental studies found ultra-low-volatility
organic compounds (ULVOC) to nucleate, but not LVOC or ELVOC (Kirkby et al., 2023). Attempts have thus been undertaken
previously to increase the representation of ELVOC molecules in training data sets for vapor pressure estimation models (Besel

et al., 2024).
3.2 GC32NN-broad

Compared to the confined data set, the broad data set encompasses a much larger range of molecular complexity, going far
beyond molecules relevant for atmospheric SOA. Thus, and despite a much larger training set size, the adGC>NN-broad model
achieves a lower test set accuracy than the adGC?NN-confined model, with an MAE of 0.67 log-units for the T+V model (Fig.

6). Average training time of the cross-validation models is 4.4 hours on a Nvidia A100 GPU, and the average test set mean
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Figure 6. Correlation scatter plots of model-predicted and experimentally-measured vapor pressures for the broad data set. Displayed are data
from the independent test set only. (A) adGC2NN-broad model, (B) fdGCZNN-broad model, (C) OHE-CNN method presented in Kriiger
et al. (2022), and (D) EPI-Suite (EPI). Mean absolute error (MAE) values are in log10(pyap / [Pal]). The dashed lines (1.5 log-units from the

1:1 line) are used to indicate significant outliers.

absolute error (MAE) is 0.68 log-units with a standard deviation of 7.64x 1073, The T+V fdGC?NN model performs worse
with an MAE of 0.78 log-units. Cross-validation f{dGC?>NN models have an average test set MAE of 0.80 with a standard
225 deviation of 1.49x 10~2 and an average training time of 2.4 hours. Both GC>NN models outperform the OHE-CNN approach
from Kriiger et al. (2022) (MAE = 1.07 log-units; average MAE = 1.09 log-units for five cross-validation folds), but have a
larger test set error than EPI-Suite (EPI) (MAE = 0.63 log-units). Error distributions for the broad test set are displayed in
Fig. S5. Note that EPI-Suite was trained on larger data sets that are not publicly available. As discussed above, the MAE that
EPI-Suite achieves in our test set is likely biased through overlap of training and test data and thus not fully representative for

230 unknown molecules.
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We also train a fdGC2NN model on a subset of the broad data with log1o(pvap / [Pa]) > O to investigate the effect of
experimental uncertainty in the low-volatility range. Due to the large fraction of low-volatile compounds in the broad data, the
high-volatility subset only contains roughly 50% of the original compounds (n = 3116). The cross-validation models achieve
an average MAE of 0.37 log-units, greatly reducing the error by more than 50% and outperforming EPI-Suite (Fig. S6, S7). A
molecular corridor plot following Shiraiwa et al. (2014) for the adGC?NN-broad model is displayed in Fig. S8, exhibiting a

similar bias than the confined model (Fig. 5).
3.3 GC2NN-GeckoQ

In addition to the experimental data sets, we train GC>NN models on the GeckoQ data from Besel et al. (2023), which were
derived from quantum-mechanical calculations. For the T+V adGC?NN model, the average test set mean absolute error (MAE)
is 0.66 log-units (Fig. 7). The five adGC?NN cross-validation models achieve an MAE of 0.67 log-units, average training time
is 13.77 hours on a Nvidia A100. Again, the adGC2NN model achieves a better result than the f{dGC2NN model (MSE = 0.71
log-units; average MAE = 0.74 log-units for five cross-validation folds with an average training time of 3.4 hours on a Nvidia
A100), as well as the model adapted from Kriiger et al. (2022) for py,, prediction (MAE = 0.77 log-units; average MAE = 0.77
log-units for five cross-validation folds). It also outperforms the Gaussian Process Regression model presented in Besel et al.
(2023) which achieved a test set MAE of 0.82 log-units.

13



https://doi.org/10.5194/egusphere-2025-1191
Preprint. Discussion started: 20 March 2025
(© Author(s) 2025. CC BY 4.0 License.

A) 10°
102

Estimated pyap [Pa]

%Y

Estimated py4p [Pa]

N
-
o

O

Estimated py4p [Pa]

1072

10751 ..
1079 -.

10—10 .

@ adGC2NN
MAE = 0.66
10710 1075 0 10°

QM-derived pysp [Pa]

) 10°

=y
o
o

1072

1077 -
1071

10710

-
o
o

1072

107°

1071 ..

10—10

o fdGC2NN

MAE = 0.71

10710 107° 0 10°
QM-derived pysp, [Pa]

® OHE-CNN

MAE =0.77

10710 107° 0 10°
QM-derived py,p [Pa]

EGUsphere\

Figure 7. Correlation scatter plots of model-predicted and experimentally-measured vapor pressures for the GeckoQ data set. Displayed are
data from the independent test set only. (A) adGC?NN-GeckoQ model (B) fdGC2NN-GeckoQ model, and (C) OHE-CNN method presented
in Kriiger et al. (2022). Mean absolute error (MAE) values are in log1o(pvap / [Pa]). The dashed lines (1.5 log-units from the 1:1 line) are

used to indicate significant outliers.
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3.4 Learning curves

For each of the three data sets, we obtain fdGC?NN learning curves by training models on subsets of specific sizes. By sampling
subsets from the confined, broad and GeckoQ data sets, we obtain three different learning curves that represent models based
on different molecular variability and hence different scopes. In general, we observe that significantly more data are needed
to achieve the same accuracy, if the data contain a larger variety of compound classes as found in the broad data set (Fig.
8). Gradients and convergence rates of the learning curves significantly differ between the data sets. The fdGC?NN-confined
models exhibit the steepest learning curve, possibly due to the limited variability of elements and molecular substructures.
While the lack of distinct molecular features may impede models trained on few data, the same simplicity seems to permit
good model performance with the full training data. In the broad and GeckoQ data, the high variability of molecular features
and, potentially, their complex interactions require much more data for accurate predictions. None of the learning curves appear
to fully level-off for large data set sizes, which means that the models can be expected to improve significantly with additional
training data.

Note that we chose to display learning curves for fdGC2NN models only because for adGC?NN models, model performance
in a test data set depends more strongly on the distribution of molecule sizes in the training data set. While all compounds are
passed through the first graph layer, later layers are frequented less, which leads to a large variability of model errors for the
smallest training data set sizes.

In addition to the fdGC2NN models, we tested graph-only models without the additional input layer to obtain holistic
molecular information (group-contribution component). These pure GCNN models are associated with significantly larger
errors for all data sets and sizes (Fig. S9). This can be attributed to graph convolutions which, in principle, are merely a
succession of local operations on subgraphs. In a GC2NN, each additional convolution layer increases the distance allowed for
two nodes (and hence atoms) to influence each other. Setting the number of graph convolution layers to the largest distance
between two nodes in the data set would enable the model to derive information from each molecule as a whole. However,
this is detrimental for most model training because it would result in very deep neural networks which would likely over-fit
on most data sets. Therefore, since the graph neural network training might not effectively capture whole-molecule properties,
the lack of information on general molecular properties, like molar mass, inhibits the graph-only models to generalize between
molecules of different size. We observe that the addition of molar mass as an input is crucial for the performance of GC2NN,

while additional descriptors like element and functional group counts lead to further improvements.

4 Conclusions

Our findings suggest that group contribution-assisted graph convolutional neural networks (GC?NN) and graph representations
of molecules are a promising approach for quantitative structure-activity relationship (QSAR) models. Despite the challenging
scarcity of experimental data available for atmospherically relevant compounds, the GC?NN models surpass established meth-
ods, including parameterizations, group contribution methods, and machine learning (ML) approaches. Graph representations

are a natural and unambiguous representation of molecular structures, encoding additional information related to individual
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Figure 8. Mean absolute error (MAE) for independent test sets (confined: n = 137; broad: n = 625; GeckoQ: n = 3,163), as a function of
training data set size of fdGC>NN models trained on subsets of the three data sets. The experiment is performed by sampling subsets of
various size from each of the respective data sets and training fdGC?NN models on these. Hyper-parameter tuning is performed for each
subset. Shown are the average test set log unit MAE of five cross-validation models in each subset. Error bars represent standard deviations

across the cross-validation folds.

atoms (graph nodes) or bonds (graph edges), and making spatial relations between molecular substructures directly inter-
pretable. With that, graph representations are advantageous over molecular representations in which spatial information are
lost or not easily retrievable, such as one-hot encoded (OHE) SMILES strings, which we used previously in conjunction with
convolutional neural networks (CNN) for the determination of quinone redox potentials Kriiger et al. (2022). In this study,
OHE-CNN models performed worse than GC2NN models for every tested data set. Note, however, that we only performed a
very basic tuning of the hyperparameters from the original study and correlation of the OHE-CNN model may improve with
more extensive optimization.

We find that models that combine graph convolution with the direct interpretation of molecular properties like molar mass,
element, and functional group occurrences outperform models that only process one of the two. The accuracy of graph-only
GCNN models, without the additional input layer, falls behind pure group contribution models that process information on
functional groups under consideration of known principles governing their effect on molecular properties. The provision of
holistic information on the molecular structure, especially molar mass, is crucial for the performance of GC2NN models, as
graph convolutions only process structural information locally. The difficulty in the application of graph convolutional neural
networks is their dependence on the size of the input graphs. Therefore, specialized fdGC2NN models for narrow vapor pressure

ranges achieved excellent results, given sufficient training data, in this study. Our adaptive-depth approach, however, enables
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the GC?NN to make use of the full training data, while matching the individual nodes’ receptive fields with the compound size
dynamically.

In general, the application of machine learning with few data is challenging, and learning curves suggest that additional data
would significantly improve model accuracy for all compound ranges. We hypothesize that ML QSAR models may furthermore
improve through prediction of multiple related molecular properties at a time. For instance, vapor pressure-predicting models
may benefit from the simultaneous prediction of melting points or glass transition temperature, as the addition of such properties
in the training data possibly makes physical principles more accessible by the model. Additional molecular parameters that are
known to affect vapor pressure, such as polarity and representations of secondary intermolecular bonding, might also increase
prediction performances with a similar architecture in the future. However, this may pose further restrictions on the training
data available while highlighting how the application of machine learning methods in atmospheric chemistry is currently
limited by the scarcity of comprehensive experimental data sets involving atmospheric compounds. Furthermore, the multiple
component approach to QSAR modelling permits the utilization of far more advanced group contribution components alongside
the graph convolution component. While the shallow neural networks in our study can indiscriminately be applied to various
molecular descriptors and data sets, the utilization of advanced group contribution methods like SIMPOL or EVAPORATION
alongside the graph convolution component, or the utilization of additional molecular descriptors may significantly increase
model accuracy.

By using data sets of differing molecular complexity, a broad data set using most web-crawled data and a data set confined
for atmospherically-relevant compounds, we find that the more specialized model can achieve a higher test set accuracy. In turn,
while the models training on the broad data set have the largest error of all GC2NN models in this study, they are applicable
to a large population of compounds with a diverse elemental composition and variety of functional groups, encompassing both
organic and inorganic species. It is therefore recommended to train QSAR models that are specific to certain molecule scopes
and applications. We also find that model accuracy significantly differs between models that are trained on subsets of the py,p
range, and that models that are trained on smaller ranges can outperform more general models despite training data scarcity. In
practice, an ensemble approach with multiple models, e.g., specifically for the low and high volatility range may be a viable
approach for ML methods, similarly to the ensemble utilization of the Modified Grain, Antoine and Mackay methods (EPI; Li
et al., 2016). Further improvements may be achievable through data curation techniques, as common outliers between various

methods indicate data points with large experimental uncertainty.

Code and data availability. The data and source code, as well as a model executable are openly available at:
https://doi.org/10.17617/3.GIKHJL
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